
THE HYBRID ARCHITECTURE OF
ADOBE EXPERIENCE MANAGER

HOW TO AUTHOR AND DELIVER MULTICHANNEL CONTENT

2JANUARY 2019 | The hybrid architecture of Adobe Experience Manager 2JANUARY 2018 | Transforming Customer Experience with Personalized Communications

The ways in which people digitally connect with the world continue to expand, ranging

from traditional web browsers and mobile apps to the newest wearable tech, virtual

reality, and IoT devices. This technological growth challenges marketers to produce

consistent, engaging experiences across multiple channels. IT organizations must not

only support this landscape of connected devices but also prepare for the future.

Adobe Experience Manager, the leading solution for content management, features a

decoupled, modular architecture and provides extensible capabilities that empower

marketers to build fantastic experiences for any channel.

Content management in Experience Manager is
built around the concept of fluid experiences. Fluid
experiences decouple content and its management
from its delivery channels, enabling you to reuse
content across any channel quickly and easily.

Content delivery in Experience Manager
leverages a platform approach, which Experience
Manager Sites, Screens, Assets, Forms, and content
services all build upon. This approach creates a
standardized, reusable and extensible content
delivery architecture that can target any channel.

The channel-agnostic content management and
content delivery framework of Experience Manager
combine to form a hybrid content management
system (CMS) that is capable of owning one
channel or supporting multiple channels.

This white paper explains the hybrid architecture
of Adobe Experience Manager and how brands
can leverage its powerful authoring and delivery
mechanisms to engage customers with relevant
content on the channel and device of their choice.

Executive summary

3JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

CONTENTS

2 Executive summary

4 Why a hybrid CMS?

4 Traditional CMS architecture

5 Headless CMS architecture

6 Experience Manager: A hybrid CMS

7 Multichannel authoring with Experience
Manager fluid experiences

8 Content fragments

10 Experience fragments

12 Content fragment and experience fragment
comparison

13 Multichannel content delivery in Experience
Manager

14 Delivering HTML content in Sites, Screens, and Forms

16 Delivering content in JSON with Experience
Manager content services

19 Enabling single-page applications with Experience
Manager Sites SPA Editor

19 Summary: HTML Delivery vs. JSON Delivery in
Experience Manager

20 Best practices for multichannel content delivery

21 Appendix A: Code example showing HTTP
request and JSON response

22 Appendix B. Code example showing custom
component development

4JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Why a hybrid CMS?

Many CMSs fall into the category of either a traditional or headless CMS. A hybrid CMS
combines the concepts of traditional and headless CMSs into a single architecture, resulting in
the best of both worlds while mitigating their disadvantages.

Traditional CMS advantages:

• Enables marketers to offer a
consistent message and personalized
experiences

• Empowers marketers to update
presentation and layout with in-
context previews

• Lowers total cost of ownership
initially with a single architecture
stack and efficiencies in system
maintenance and training

Traditional CMS disadvantages:

• Limits development to a single
channel, resulting in content silos that
are expensive to break through

• Slows IT with limited available
technology, disempowers front-end
developers, and creates a bottleneck
between teams

• Adds complexity and expense over
time as new systems are introduced
to address new channels

Web browser

Authors

HTML

Front-end

Content
management

Traditional
CMS

Traditional CMS architecture
A traditional CMS manages and delivers
content on a single technology stack,
minimizing total cost of ownership
with efficient system maintenance and
training. It controls all of the templating
and presentation logic and outputs fully
formatted HTML. A traditional CMS
is often tightly coupled with a single
channel, resulting in a monolithic software
architecture that makes multichannel
content delivery difficult and costly.

Figure 1. Traditional CMS architecture

5JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Headless CMS architecture
The term headless originates from the idea that the front-end presentation layer is the “head”
of the application. Rather than delivering HTML or formatted content directly, a headless CMS
decouples content from presentation, enabling content to be used by a variety of front-end
technologies. A headless CMS exposes content through well-defined HTTP APIs.

Headless CMS advantages:

• Scales efficiently to multiple channels
and unlocks content for use by any
consumer

• Empowers IT to use the best
technology for the job and to scale
work across multiple development
teams

• Supports new channels

Headless CMS disadvantages:

• Increases complexity for security,
access control, and personalization

• Slows time to market, as presentation
changes require developer support,
and increases back-and-forth
between IT and marketing

• Increases total cost of ownership,
as IT must develop and maintain a
variety of systems and applications

Mobile
app

Single
page app IoT Social

media

Authors

JSON

HTTP APIs

Content
management

Headless
CMS

Figure 2. Typical headless architecture

6JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Experience Manager: A hybrid CMS
Experience Manager takes a hybrid approach that offers the best of both
worlds: the efficiency and ease of use of a traditional CMS combined
with the flexibility and scalability of a headless development framework.
Experience Manager provides a central hub to house and distribute content
and experiences to any channel and delivers content either as fully formatted
HTML or as JavaScript Object Notation (JSON) over HTTP APIs. With
Experience Manager, brands can choose between traditional or headless
delivery and can mix and match capabilities to meet their business needs.

Experience Manager offers a suite of capabilities that help brands deliver
great digital experiences. With the following capabilities, Experience Manager
acts like a traditional CMS and provides channel-centric experiences from
end to end:

• Experience Manager Sites is the preeminent leader in experience and web
content management (WCM), enabling enterprise and midmarket brands
to design, author, manage, publish, and optimize their websites.

• Experience Manager Screens is a powerful tool for the digital signage
market, allowing marketers to design, author, manage, schedule, deliver,
and optimize dynamic content across digital displays.

• Experience Manager Forms transforms paper-based organizations through
digital forms and customer communication solutions.

Recognizing that many other channels exist, Experience Manager includes
features that express content in a variety of formats through API endpoints:

• Content services exposes content via HTTP APIs using a standard JSON
schema, enabling brands to expose content to any channel without coding.

• Sling Model Exporter allows developers to quickly render any Experience
Manager content into JSON using custom business logic.

Mobile
app

Single
page app IoT Social

media

Authors

JSON

HTTP APIs

Content management

Hybrid
CMS

Web
browser

HTML

Front-end

Figure 3. Adobe Experience Manager hybrid architecture

7JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Multichannel authoring with Experience Manager fluid experiences

The hybrid architecture of Experience Manager enables fluid
experiences—brands can create content once and deliver
to multiple channels. Authors create and manage content
in a centralized location, improving efficiency and message
consistency while maintaining the flexibility to optimize
experiences per channel. Content can be an image, text-
based editorial snippets, or a combination of several pieces of
content that creates a reusable experience.

The following Experience Manager capabilities and features
support fluid experiences:

• Experience Manager Assets offers seamless access to
image, video, and document assets across organizations,
partners, teams, and channels. Marketers and creative teams
can work side by side to generate and deliver engaging
content.

• Content fragments are text-based editorial content that
may include some structured data elements, but no design
or layout information.

• Experience fragments combine several pieces of content,
such as text and images, to form an experience that
makes sense on its own. They include design and layout
information.

Results from unifying customer
data to efficiently create
targeted campaigns:

Figure 4. Authoring a content fragment in Experience Manager

8JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Content fragments
A content fragment is a design- and presentation-agnostic set of
content. Content fragments can contain unstructured data, for
example, text and images, or structured data elements based on a
data model. Unstructured content fragments are ideal for articles
or other long forms of text, as authors can focus on writing and
rely on downstream channels to manage layout and formatting.
Structured content fragments are ideal for business-specific data. A
text summarization feature enables authors to create variations of
content optimized for downstream channels. Experience Manager
Assets stores content fragments, so they can take advantage of version
control, approval workflows, and translation services.

Content fragment models define the data schema for a content
fragment and contain the following fields:

• Text

• Multiline text

• Number

• Boolean

• Date and time

• Enumeration

• Tags

• Reference

A drag-and-drop user interface empowers authors to generate content
fragment models quickly and easily without coding, specifying data
types, and adding data entry rules.

Results from unifying customer
data to efficiently create
targeted campaigns:

Figure 6. Screen showing how to create a content fragmentFigure 5. Example of a content fragment model

Content Fragment Model

Full Name

Birthday

Content Fragment A
Full Name

John Doe

1999-04-01

Birthday

Content Fragment B

Full Name

Gerald Smith

1979-02-05

Birthday

9JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

From a single content fragment, you can
generate one or more variants that adhere to
the model and use the variants for different
channels.

Use content fragments when the content:

• Is channel agnostic

• Adheres to a structure

• Does not require a specific layout or design

• Is not directly connected to the channels or
experiences that expose it

Use content fragments for HTML delivery in:

• An Experience Manager Sites page to
transform the content it contains into
HTML that can be styled for display on a
web page

• An experience fragment to transform
the content it contains into HTML that
can be styled for a social post—for more
information, read about experience
fragments

Delivery mechanisms for content
fragments

• Combine content fragments with
formatting and templating and deliver as
fully formatted HTML with out-of-the-box
integration with Experience Manager Sites
or Screens.

• Deliver in JSON with Experience
Manager content services.

Key considerations—
Content fragments:

• Leverage the features of Experience
Manager Assets, including taxonomy,
metadata, workflow, versioning,
discoverability, security, collaboration,
and content intelligence

• Leverage localization capabilities
in Experience Manager if they are
organized by locale in Assets

• Adhere to a defined data model,
ensuring data consistency; data
models can change over time, but
changes affect all content fragments
that use them

• Support long-form editorial text, such
as an article, where the text is an
element of the article’s data model

• Are not directly accessed, but rather
provide content to channels, which
are responsible for managing the
presentation of the content fragment

• In some cases, content fragment
models can create relationships with
other pieces of content—for example,
a content fragment can reference
an image or even another content
fragment; however, the reference
is path-based, and if the referenced
content moves, the path will no
longer point to the correct location

Figure 7. Use-case specific varients

Content
Fragment

Variant
A

Variant
B

Variant
C

Represents a logical
piece of content

Use-case
speci�c variants

10JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Experience fragments
An experience fragment combines one or more pieces of content with
design and layout. A good example of an experience fragment is a
promotional experience composed of a banner image, text, and a call
to action button. Experience fragments allow marketers to manage

experiences from a central location and ensure a consistent message
while delivering contextually optimized content to each channel.
While experience fragments define standalone experiences, they are
designed to optimize display for different channels, such as a web
page, social feed, mobile app, or IoT device.

Results from unifying customer
data to efficiently create
targeted campaigns:

Figure 8. Example of an experience fragment viewed on different channels

Experience
Fragment

Web
Variant

Mobile
Variant

Promo
Variant

Represnts a logical
experience

Channel or context
speci�c variants

11JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Experience fragments, like content
fragments, are composed of one or more
variations, each addressing a different
context or channel, optimizing the
presentation of the core experience to best
align with the channel and its audience.

Authors create variations using a predefined
experience fragment template that supports
any channel. Templates can be reused
across experience fragments or even
across variations of a single experience
fragment, accelerating the rate of creation
and publishing of channel-specific content.
Most experience fragment variations are
web based and intended for a browser.
Experience Manager provides variations for
social posting to Facebook and Pinterest out
of the box.

Use experience fragments when the
experience:

• Can stand on its own

• Displays differently across channels

• Includes layout or design

Use cases for experience fragments include:

• A website product promotion that is
syndicated to third-party websites for
cross-promotion

• A campaign synchronized across a brand’s
website, mobile app, and social media
feeds

• A/B testing and audience targeting,
enabled by out-of-the-box integration with
Adobe Target, that optimizes experience
fragment variations by channel or audience

Delivery mechanisms for experience
fragments

• Embed server-side with out-of-the-
box components into other Experience
Manager features like Sites or Screens and
deliver as HTML.

• Embed variations into third-party
applications over HTTP endpoints and
integrate as HTML.

• Post variations to social media channels via
respective social media APIs.

• Send variations to Adobe Target for
dynamic embedding in a Sites or third-
party website.

Key considerations—
Experience fragments:

• Are stored as Experience Manager
pages, enabling rich experience
curation

• Are built on Experience Manager
templates and components,
simplifying self-service configuration
by authors

• Support content reuse between
variations using the live copy feature,
which provides intelligent content
synchronization

• Support content reuse between
variations as well as other experience
fragments using build blocks

• Provide in-context experience
creation, allowing authors to visualize
how the experience will appear in
other channels

• Contain presentation elements, so
third-party integration is via HTML
snippets

• Provide out-of-the box social media
templates for Facebook and Pinterest
platforms—support for additional
social media platforms requires
custom code

12JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Content fragment and experience fragment comparison

 Content fragment Experience fragment

Definition Design-agnostic content based on a structured data
model

Composition of one or more pieces of content with design
and layout applied

Core tenets Channel agnostic Experience specific

Structured data based on content fragment models Unstructured data composed of Experience Manager
components.

Sets of raw data, stored as primitive data types: text,
numbers, date and times, Booleans, or references

Rich experiences consisting of design, layout, and behavior,
composed of one or more disparate pieces of data

Variations Use-case specific Channel/context specific

Sets of raw data, stored as primitive data types: text,
numbers, date and times, Booleans, or references.

Rich experiences consisting of design, layout, and behavior,
composed of one or more disparate pieces of data

Technical
implementation

Experience Manager digital asset management (DAM):
Asset JCR node type

Experience Manager CQ: Page JCR node type

13JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Multichannel content delivery in Experience Manager

To support all channels, CMSs must expose the content they manage
in a multiformat and scalable way. There are two standard formats
for exposing web content: HTML and JSON. HTML has long been the
language of the web browser, while JSON is a lightweight delivery
format that powers modern connected applications.

Experience Manager uses templates, pages, and components to
compose content and deliver it via both HTML and JSON. Components
can reference and reuse content abstraction features, such as content
fragments, experience fragments, and assets, within the same channel
or across channels. The following sections will explore in detail how
Experience Manager delivers content via HTML and JSON.

Figure 10. JSON output in Experience Manager

Figure 9. Delivering HTML with Experience Manager

Component

Web page template

Content delivery

Content management

Component

AEM Sites page

Components
reference content

to expose as HTML

Content

Content
fragments

Component

Component

HTML

Experience
fragments Assets

Content services page template

Content delivery

Content management

Component A

Component B

Component C

Content services
proxy page

Components
reference content
to expose as JSON

Content

Content
fragments

JSON consumer

Experience
fragments Assets

Authors

14JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Delivering HTML content in Sites, Screens, and Forms
Experience Manager can operate as a traditional web CMS for
delivering HTML in Sites, Screens, and Forms. Templates define layout,
content, and configurations and are responsible for including and
supporting assets like CSS, JavaScript, and fonts. When used for web
pages, templates also dictate which components authors can use on
pages. A WYSIWYG, in-context authoring experience grants authors
complete control over content layout and formatting. Components
render in HTML and allow authors to configure, aggregate, or reference
Experience Manager content or create new content inline.

WCM components
Using components, Experience Manager enables brands to reuse
content across pages and channels and render the content as HTML
at runtime. This structure promotes consistency across channels and
offers a single, centralized location for updating content. However,
authors also have the flexibility to modify components for a particular
page. For example, authors can reference an image component stored
in the DAM system, include it on a web page, and modify its properties
for that page only.

Experience Manager includes a set of core components—such as
breadcrumbs, lists, navigation, text, images, and more—that speed up
website development. New projects should use core components as a
starting point. To meet business requirements, developers can create
custom components that extend core component functionality or
implement entirely new functionality.

Authors drag and drop components and combine them with other
components on a web page. A component on a page is an instance
of the component and contains a sling:resourceType
property that refers to the component. Dialog boxes enable authors
to modify the properties associated with the component instance,
so they can reuse components across pages and channels. HTML
Template Language (HTL) dynamically reads component properties
and renders HTML. One or more HTL scripts are typically associated
with a component. HTL scripts often rely on a Sling Model to handle
complex business logic.

Figure 11. One or more HTL scripts reference a WCM component and dynamically
render content as HTML.

Component instance

Component

Title model

Content path:
/content/page/mypage/.../title

Application path:
/apps/my-app/content/title

OSGi bundle
Sling model

HTML
HTML script(s)

String getTitle()
<h1>
 ${titleModel.title}
</h1>

jcr:title:
jcr:created:
ownerid:
cling:resourceType:

My Title Component
2018-04-01
USER1002
my-app/content/title

15JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Content fragment and experience fragment components
Experience Manager extends the same component structure and
flexibility to content fragments and experience fragments. Authors
can reference a content fragment or experience fragment variation
for a particular page and render the content as HTML. Using the
content fragment or experience fragment component, authors can
modify components to point to a different fragment variation. They
can also modify the layout and position fragments on the page.
Since the content of the fragment itself is read-only when referenced
via a component, authors create and update content directly in the
fragment, promoting content consistency and reuse.

Key considerations—Content fragment components for HTML:

• Are a subset of Experience Manager core components available on
GitHub

 – Support two options for rendering a content fragment: single text
element and multiple elements:

 – Single text element renders multiline text of a content fragment,
such as an article body. This mode automatically creates drop
zones between paragraphs, allowing content authors to insert
other media into the body of the content.

• Multiple elements render each data element of the content
fragment, including field labels derived from the content fragment
model. This mode is most commonly used in conjunction with
Experience Manager content services.

• “Stash” a copy of the content fragment text beneath the component
on the page, allowing keyword search queries to find the page, even
though all of the content is maintained in the DAM system with
content fragments; background processes ensure that as authors
update content fragments, any references are also updated

• Can be extended using content fragment APIs

Key considerations—Experience fragment components for HTML:

• Support only web-based variations

• Reference and render only the experience fragment markup on a
page; to provide an in-context preview to authors, developers must
include any CSS or JavaScript used by the experience fragment web
template in the target page template

• Do not support search indexing

Figure 12. A content fragment component references the master variation of a
content fragment titled “My Content Fragment.” The content of the master variation
renders as HTML on the page based on the HTTP request with an .html extension.

Content fragment component

Content path:
/content/page/mypage/.../contentfragment

Content path:
/content/dam/myfragment

HTML

fragmentPath:
/content/dam/myfragment
variationName:
master

Content
Fragment

Master
variant

Summary
variant

??
Variant

16JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Underlying technology: Apache Sling HTTP web framework
Experience Manager is based on Apache Sling, a RESTful web
application framework that manages HTTP requests and delivers
content. Apache Sling transforms Experience Manager content—such
as pages, experience fragments, and components—into HTML. Sling
resource resolution stitches together multiple components and their
corresponding scripts and delivers a fully formatted HTML page.

While Apache Sling is capable of exposing content in a variety
of formats, Adobe recommends it only be used to serve HTML
(and supporting assets, JavaScript and CSS) and binaries (images,
documents, videos). For JSON formats, Experience Manager provides
more robust and extensible tools, as described in the next section.

Delivering content in JSON with Experience
Manager content services
Experience Manager content services is a zero-code framework that
exposes content in a standard JSON format. Content services allow
brands to create dedicated HTTP endpoints separate from traditional
Experience Manager channels. It serializes content via a JSON
exporter, automatically exposing Experience Manager content, such
as content fragments, in JSON. This promotes the reuse of Experience
Manager content while decoupling the JSON HTTP endpoint from the
rest of the application, giving front-end developers a consistent API to
code against.

Experience Manager content services builds on top of Apache Sling
Model Exporter and provides its own JSON schema for components
that implement its interfaces. Content services still leverages
Experience Manager templates, pages, and components, but outputs
to JSON instead of HTML.

• Templates define the top-level JSON schema and structure for
downstream consumers by enforcing which components must be
on a page and which components authors can add.

• Pages define the HTTP API endpoints that deliver JSON. Developers
can define HTTP APIs using one or more pages, with each page
acting as an HTTP endpoint that delivers a logical set of JSON data.

• Components are units of data that allow authors to choose and
configure which data to expose. Similar to the HTML use case,
authors can configure components to aggregate and reference other
content in Experience Manager.

Figure 13. Relationship between Apache Sling and Experience Manager for
HTML content delivery

AEM stack

Oak—Java content repo

content

en

mypage

/content/en/mypage.htmlHTTP
requests

Sling—Web application framework

OSGi—Application framework

HTML

17JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Using the content fragment component to output to JSON
format
One of the more powerful aspects of Experience Manager content
services is that it exposes both the content fragment and the
underlying content fragment model. Brands can render content
fragments in HTML and also expose them in JSON format. Content
and data elements (label, data type) of a content fragment are
exposed as JSON, allowing downstream applications to make
intelligent decisions on how best to render the content.

The Experience Manager content services endpoint requests the
Experience Manager content services endpoint page using the model.
json selector and extension. Any components added to the page
are included in the resulting JSON. For a code example of the HTTP
request and JSON response, see Appendix A.

Use content fragment components when:

• You will reuse content across HTML and JSON channels

• Developers need to manage APIs outside Experience Manager
deployments

• You require APIs to be rapidly defined and deployed

• APIs could benefit from localization/translation, as Experience
Manager content services endpoints can leverage language copy
and multisite manager features

Key considerations— Content fragment components for JSON:

• Are a subset of Experience Manager core components available on
GitHub

• Automatically expose content as JSON as a part of content services

• Enable marketers to add and update them on Experience Manager
pages; content services exposes these pages as API endpoints

• Require strict governance for page templates—a page structure that
clearly delineates fixed versus flexible components ensures that
marketers, during the course of authoring, cannot introduce changes
that break the API endpoints

• Offer limited capabilities to add dynamic business logic without
custom code

Developing custom components

Developers can create custom components by implementing
the ComponentExporter interface, making them compatible with
Experience Manager content services. For more information, see the
code example in Appendix B. Figure 14. Content services exposes both the content fragment and the underly-

ing content fragment model.

Content fragment model

Article Title

Article Body

Content fragment component

Content path:
/content/api/services/.../contentfragment

Content path:
/content/dam/myfragment

JSON

fragmentPath:
/content/dam/myfragment
variationName:
master
displayMode:
multi

My Content
Fragment

Master
variant

Summary
variant

??
Variant

18JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Underlying Technology: Apache Sling Model Exporter
The underlying technology of Experience Manager content services
is Apache Sling Model Exporter, which builds on the Sling HTTP web
framework and provides a mechanism for serializing Sling Model Java
objects into any JSON format. Sling Models are developed in Java as
annotated POJOs and represent some logical set of content or data.
The Sling Model Exporter framework is an extension of Sling Models
and facilitates the automatic serialization of the Sling Model object
into JSON, using the FasterXML Jackson library.

The Sling Model Exporter binds to content using the content’s
sling:resourceType and a selector, allowing developers to
attach distinct JSON representations to different content in Experience
Manager. HTTP requests to the content resource retrieve the
content in its JSON format. The content resource has the matching
sling:resourceType set and a customs selector and extension:

HTTP GET /path/to/content.<selector>.json, for example: HTTP
GET /content/site/en/products.details.json

Use the Apache Sling Model Exporter when:

• You require a custom JSON schema (different from content services)
to expose Experience Manager content

• Exposing existing Experience Manager content that is incompatible
with content services, for example, content without content
fragments or Sites components not using Sling Models

• You need to dynamically inject complex business logic into the JSON
output

Key considerations—Apache Sling Model Exporter:

• Requires custom development that you must maintain

• Should use a different selector than .model to avoid conflicts with
Experience Manager content services

Figure 15. Adding Sling Model Exporter annotation to a Sling Model returns serialized
JSON based on a data selector for a content component.

Content component

JSONComponent

ProductDataModel

Content path:
/content/widgets/my-widget

Application path:
/apps/my-app/data/product

OSGi bundle
Sling model

HTTP GET/content/widgets/my-widget.data.json
String getTitle()

String getOwner()
int getAgeInDays()

Sling model exporter

resourceType = my-app/data/product
selector = data

jcr:title:
cq:createdAt:
ownerId:
sling:resourceType:

My Product
2018-04-01
USER1002
my-app/data/product

19JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Enabling single-page applications with Experience
Manager Sites SPA Editor
Single-page applications (SPAs) are growing in popularity as the
performance and responsiveness of web experiences become
critical. Developers can build these experiences rapidly with popular
JavaScript frameworks such as React and Angular, typically using
decoupled or “headless” CMSs. However, this approach cuts marketers
and authors out of presentation or layout decisions. Time to market
and total cost of ownership increase, as any presentation changes
require development support.

Sites solves these problems while enabling developers to use their
familiar frameworks and development tools. The Sites SPA Editor
offers a WYSIWYG user interface that enables marketers and authors
to make in-context changes to content, layout, and presentation, just
as they would with traditional web pages. Any changes or updates are
immediately reflected in the SPA.

Key considerations—SPA Editor:

• Is intended for use with Sites

• Is powered by content services with JSON content from Sites

• Supports integration with React and Angular frameworks via an SDK

• Enables developers to continue to use familiar front-end
technologies to develop the SPA

• Enables marketers to leverage familiar Experience Manager
authoring tools to edit the SPA

Summary: HTML Delivery vs. JSON Delivery in
Experience Manager

HTML delivery JSON delivery

Capability or
feature

Sites, Screens, Forms Content services

Underlying
technology

Sling HTTP web
framework

Sling Model Exporter

Templates Responsive layouts that
define the structure and
appearance of a web
page

JSON schema
definitions

Pages Traditional pages
forming an Experience
Manager website,
based on templates and
components

HTTP API JSON
endpoints adhering
to the JSON schema
definition that includes
templates and
components

Components Modules that collect
and present content on
a page

Modules that collect
and transform content
into normalized JSON

Referenced
content

Content fragments,
experience fragments,
Assets

Content fragments,
Assets

20JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Best practices for multichannel content delivery

Implementing a CMS that serves all audiences and channels can seem like a daunting task. The following tips will
help maximize success.

 » Start small and be agile. Take a phased approach to building out your content management strategy, and
measure your success before implementing larger projects. Remember to react and evolve—Rome wasn’t built
in a day.

 » Consider future channels today. Don’t try to predict the future. Instead, stay as flexible and extensible as
possible.

 » Content is only as good as the creator, so consider the authoring experience. When focusing on technical
strategies for exposing content to a myriad of devices, it is easy to forget about creators. Work with creators and
authors to understand how to make their experience great.

 » Define your one voice and one message. Cross-channel marketing experiences require your brand to have
a cohesive, unified, and consistent voice. Look upon this journey in content consolidation and multichannel
delivery as an opportunity to affect organizational alignment and centralize content creation.

 » One size doesn’t fit all. You will have different experiences requiring various authoring approaches, delivered
to an assortment of channels. The hybrid paradigm is about using the right option for a given use case. Embrace
the options.

21JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Appendix A: Code example showing HTTP request and JSON response

HTTP GET /content/api/articles.model.json

{

 :type: "my-app/components/structure/api-page"

 title: "Data API",

 lastModifiedDate: 1467202845038,

 templateName: "api-page",

 language: "en-US",

 :items: {

 root: {

 :items: {

 contentfragment: {

 :type: "my-app/components/content/
content-fragment",

 title: "My Article",

 model: "my-app/models/article",

 elements: {

 title: {

 value: "My Article",

 dataType: "string",

 title: "Article Title"

 },

 body: {

 value: "... the article
text... ",

 dataType: "string",

 title: "Article Text"

 },

 ... other Content Fragment fields ...

 }

 },

 ... Other components that expose content
to this API ...

 },

 :itemsOrder: [

 "title",

 "body"

 }

 }

 },

 :itemsOrder: [

 "root",

 }

}

22JANUARY 2019 | The hybrid architecture of Adobe Experience Manager

Appendix B. Code example showing custom component development

import com.adobe.cq.export.json.ComponentExporter;

@SlingModel(

 adaptables = SlingHttpServletRequest.class,

 adapters = { MyComponent.class, ComponentExporter.class }

)

@Exporter(

 name = ExporterConstants.SLING_MODEL_EXPORTER_NAME,

 extensions = ExporterConstants.SLING_MODEL_EXTENSION

)

@JsonSerialize(as = MyComponent.class)

public class MyComponentImpl implements ComponentExporter {

 String getHelloWorld() {

 return "Hello World";

 }

 @Override

 String getExportedType() {

 return "my-app/components/content/my-component;

 }

23JANUARY 2018 | Transforming Customer Experience with Personalized Communications

Adobe and the Adobe logo are either registered trademarks or trademarks of Adobe in
the United States and/or other countries. All other trademarks are the property of their
respective owners.

© 2019 Adobe. All rights reserved. 1/19

	Executive summary
	Why a hybrid CMS?
	Traditional CMS architecture
	Headless CMS architecture
	Experience Manager: A hybrid CMS

	Multichannel authoring with Experience Manager fluid experiences
	Content fragments
	Experience fragments
	Content fragment and experience fragment comparison

	Multichannel content delivery in Experience Manager
	Delivering HTML content in Sites, Screens, and Forms
	Delivering content in JSON with Experience Manager content services
	Enabling single-page applications with Experience Manager Sites SPA Editor
	Summary: HTML Delivery vs. JSON Delivery in Experience Manager

	Best practices for multichannel content delivery
	Appendix A: Code example showing HTTP request and JSON response
	Appendix B. Code example showing custom component development

