
1

Tip 1: Perform day-to-day development in your own external repository.

Adobe Commerce Cloud provides a GitHub repository for triggering deployments in your environment.
However, this repository typically shouldn’t be used for day-to-day development. Instead, development
activities should be performed in your own external Git or Bitbucket repository. Adobe Commerce Cloud
allows you to integrate your external repository with the Adobe provided Git repository and automatically
synchronize events between them.

The specific steps and order for performing an integration vary between Bitbucket and GitHub. But
generally speaking, you will need to create your external repository by cloning your Adobe Commerce
Cloud project from an existing environment and migrating the project branches to a new empty external
repository, making sure you preserve the same branch names. You will also need to create a security token
that gives you admin access to your repository and write access for pull requests and webhooks. Next,
based on your respective environment, you need to enable the integration following the configuration
steps specific to Bitbucket or GitHub. After that, add a webhook to your Bitbucket or GitHub repository
and then verify that the integration works by creating a test file.

Learn more >

Tip 2: Make sure you use and have the latest version of ece-tools installed.

The metapackage for Adobe Commerce Cloud comes with the ece-tools package. This facilitates the
management of your cloud project’s infrastructure and code deployment. It gives you a rich set of
management features, including wizards to help you configure your environment according to best
practices, scripts and commands to manage your code and automatically build and deploy your
projects, and direct integrations with your local cloud docker setup to simplify management of services,
environments, and deployments.

Important to know: The only branches that
should exist in the Git repository when the
integration is initially activated are those from
the original Cloud repository. The names of
the branches in the external repository must
also be identical to those in the original
Cloud repository (note that these names
are case-sensitive).

Helpful hint: More details on repository
integration, as well as thorough guidance on
other aspects of building your e-commerce
platform, can be found in our “Best Practices
Guide: Developing & Maintaining your
Cloud Project”.

Important to know: The person setting up
your integration must have “admin” access
levels for your repository.

David Young is a business solutions architect. He played an instrumental part in developing and growing the
e-commerce and marketing departments for a retailer and later took a role as a lead developer at an agency
where he became a Magento certified developer and solutions specialist. David leverages his experience and
expertise to envision and develop the future for his clients in Adobe Commerce Cloud.

With the benefit of his real-world insight, we’ve curated the following tips and tricks to simplify and enhance
the development and maintenance of your e-commerce cloud platform.

David Young
Business Solutions Architect,

Adobe Commerce Cloud

Seamlessly merge commerce with customer experience.
6 tips and tricks to enhance the creation of your ecommerce experiences.

Adobe Commerce Cloud provides merchants the e-commerce platform and business intelligence they need to transform
their business and address the full spectrum of commerce challenges.

https://devdocs.magento.com/guides/v2.2/cloud/integrations/bitbucket-integration.html
https://devdocs.magento.com/guides/v2.2/cloud/integrations/github-integration.html
https://devdocs.magento.com/guides/v2.2/cloud/integrations/cloud-integrations.html
https://magento.com/sites/default/files/Developing-Maintaining-Your-Cloud-Project-Guide-Oct-2018.pdf
https://magento.com/sites/default/files/Developing-Maintaining-Your-Cloud-Project-Guide-Oct-2018.pdf
https://magento.com/sites/default/files/Developing-Maintaining-Your-Cloud-Project-Guide-Oct-2018.pdf
https://magento.com/sites/default/files/Developing-Maintaining-Your-Cloud-Project-Guide-Oct-2018.pdf

2

Since ece-tools provides the essential functionality needed to simplify and effectively deploy and manage
your Adobe Commerce Cloud project, make sure it’s installed and up-to-date. You can quickly check by
running “cat composer.lock | grep “ece-tools”” from the root of your Adobe Commerce
Cloud project. If you need to upgrade to a more recent version of ece-tools, first make sure that you have
a clean working tree and execute the following commands from the root of your local development
environment: composer update magento/ece-tools and git add -A && git
commit -m “Update magento/ece-tools” && git push origin <branch

name>.

Learn more >

Tip 3: Change static content deployment from deploy phase to build phase.

The static content deployment phase is one of the longest and most resource-consuming processes in
deploying your store. It involves assembling all the template files, JavaScript, and theme images needed to
render the front end of your site. By default, this occurs during the deploy phase when, unfortunately, all the
connections to your website are held until the deploy phase ends. If you instead assemble all your static
content as part of the build phase, those tasks no longer happen during deploy, significantly reducing your
site downtime.

To allow static content deployment to take place during the build phase, you simply need to update your
config.php file with the CLI utility by using the command php vendor/bin/m2-ece-scd-dump
(Recommended: Exports only modified configuration settings) or php ./vendor/bin/ece-tools
config:dump (Exports every configuration setting, including modified and default settings). .

Learn more >

Good to know: You also have the option
to deploy static content on-demand, which
reduces site downtime even more. But in most
cases this option is not recommended since the
first users to access that content can experience
significant response lags.

Helpful hint: Other ways you can decrease
deployment downtime include enabling
the following: HTML minification on the fly,
compact SCD strategy, and post deploy hook.

Helpful hint: The other smart wizards
ece-tools let you check your database load
balancing configurations and whether
your static content deployment is set for
on-demand, the build stage, or the
deploy stage.

Helpful hint: You can install the Magento
Cloud CLI utility to locally manage the
environments for your Adobe Commerce Cloud
projects in your local repository.
More details are available in the “Manage
branches with the CLI” section of the
online documentation.

Tip 4: Use the Ideal State Wizard before deployment to ensure

best practice configurations.

One of the smart wizards included with ece-tools is the Ideal State Wizard, which tells you whether
configuration settings are in the ideal state for deployment. For example, it checks your static content
generation settings, HTML minification settings, and the presence of post_deploy hooks. Then if any of
those settings are not in the ideal state, it gives you feedback and direction on how to optimize your
configuration. To run the Ideal State Wizard, SSH into your cloud environment and execute the command
./vendor/bin/ece-tools wizard:ideal-state from your project’s root.

Learn more >

Deployment time with SCD on different phases.

https://devdocs.magento.com/guides/v2.3/cloud/project/ece-tools-upgrade-project.html
https://devdocs.magento.com/guides/v2.2/cloud/live/sens-data-over.html
https://devdocs.magento.com/guides/v2.2/cloud/env/variables-global.html
https://devdocs.magento.com/guides/v2.2/cloud/env/variables-deploy.html
https://devdocs.magento.com/guides/v2.2/cloud/project/project-conf-files_magento-app.html
https://devdocs.magento.com/guides/v2.3/cloud/env/environments-start.html
https://devdocs.magento.com/guides/v2.3/cloud/env/environments-start.html
https://devdocs.magento.com/guides/v2.3/cloud/env/environments-start.html
https://devdocs.magento.com/guides/v2.3/cloud/deploy/smart-wizards.html

Got unanswered questions? We’ve got unlimited resources.

Visit our Learn & Support page, professional services, or adobe.com to learn more about how to use helpful features within Adobe Commerce Cloud.
You can also access tailored learning paths, community forums, and feature request forms in Experience League.

Copyright © 2019 Adobe, Inc. All rights reserved. Adobe, the Adobe logo, and the Adobe Commerce Cloud logo are either registered trademarks or trademarks of Adobe, Inc. in the United States and/or other countries.

Helpful hint: You can use the CLI utility to
pull logs without having to log into the server.
Learn more about this capability in the Project
Structure — Logs section of the developer
documentation.

Important to know: Using the Fastly CDN
is mandatory for production staging. If you’re
not familiar with this service, refer to the Fastly
section of our Best Practices Guide and our
developer documentation on
Fastly troubleshooting.

Important to know: Don’t use the
“cacheable=false” block attribute to
prevent the caching and redisplay of customer
information to the wrong user. It will disable
caching for the entire page. Instead, handle it
as private content on the client-side using our
customer-data JS library to store private data
in local storage.

Important to know: Deployments are
synchronous. So, when you push changes
separately, they’ll queue up in linear fashion.
That makes it important to prioritize your
changes, since you don’t want less urgent
changes to delay more urgent ones from
being deployed.

Tip 5: Verify your configuration files and branching strategy before deployment.

It’s important to understand that the configuration files for your deployment are housed in your project
environment and will determine what happens when you trigger your deployment. Before you deploy
your project, verify that you have a valid branching strategy in your development environment and that
you’ve set up your GitHub integration properly. For example, you should know which of your branches are
active and tied to environments and have a process for closing out non-active branches. To help you create
healthy development and deployment workflows, read our guidance for Pro and Starter environments.

Also, if you’re having issues with a service that didn’t initiate correctly or has some aspect that isn’t working
properly, you can do a container refresh by pushing an empty commit. Normally, when you push a change
it triggers a redeployment of your environment. But an empty commit only rebuilds the container. To trigger
a container refresh with an empty commit, use the command git commit --allow-empty -m
“redeploy” && git push <BRANCH_NAME>.

Learn more >

Tip 6: Know the location of your applications and log files.

Since the Adobe Commerce Cloud server environment might not be structured the same as other hosting
providers, when you drop into the root of your project you might not know where to get your applications
and system logs. Depending on your connected environment, the paths vary slightly.

In the integration environment, the following paths are used:

Application: /app
Staging: /app/<project_id>_stg/
Production: /app/<project_id>/

The location for standard Magento logs and cloud-specific logs is relative to the project root. For example,
the following lobs are found in the following locations:

Environment logs in integration environments: /app/var/log
Error reports in integration environments: /app/var/report
System logs: /var/log (relative to the system root)
Troubleshooting log files for both build and deploy errors: ~/var/log/cloud.log and ~/var/
log/install_upgrade.log

Learn more >

https://www.adobe.com/commerce/magento/resources.html
https://magento.com/services
https://www.adobe.com/commerce/magento.html
https://landing.adobe.com/experience-league/?promoid=K42KVX1D&mv=other
https://devdocs.magento.com/guides/v2.2/cloud/project/project-start.html
https://devdocs.magento.com/guides/v2.2/cloud/project/project-start.html
https://devdocs.magento.com/guides/v2.2/cloud/project/project-start.html
https://magento.com/sites/default/files/Developing-Maintaining-Your-Cloud-Project-Guide-Oct-2018.pdf
https://magento.com/sites/default/files/Developing-Maintaining-Your-Cloud-Project-Guide-Oct-2018.pdf
https://devdocs.magento.com/guides/v2.2/cloud/cdn/trouble-fastly.html
https://devdocs.magento.com/guides/v2.2/cloud/cdn/trouble-fastly.html
https://devdocs.magento.com/guides/v2.3/extension-dev-guide/cache/page-caching.html
https://devdocs.magento.com/guides/v2.3/extension-dev-guide/cache/page-caching.html
https://devdocs.magento.com/guides/v2.2/extension-dev-guide/cache/page-caching/private-content.html
https://devdocs.magento.com/guides/v2.2/extension-dev-guide/cache/page-caching/private-content.html
https://devdocs.magento.com/guides/v2.3/cloud/architecture/pro-develop-deploy-workflow.html
https://devdocs.magento.com/guides/v2.3/cloud/basic-information/starter-develop-deploy-workflow.html
https://devdocs.magento.com/guides/v2.2/cloud/reference/cli-ref-topic.html
https://devdocs.magento.com/guides/v2.3/cloud/project/project-start.html

