
- 1 Television Gets Personal.
Television Gets Personal.
There’s a good chance that if you’ve watched Scandal on Netflix, it’s because you previously watched House of Cards or Madame Secretary or any other political TV drama. According to Netflix, personalized recommendations make up 75 percent of what people watch on its streaming service. These days, personalizing the TV experience is key to retaining consumer attention in a crowded entertainment market.
Consumers are now so saturated with media that every TV service must compete fiercely for a slice of their time and attention. In 2016, U.S. adults spent more than 12 hours a day multitasking on various media — nearly an hour more than the average time spent in 2011, according to eMarketer. By 2018, this figure will be even higher. Now, the job for TV companies is to capture the biggest share of this media consumption universe as possible, at a time when viewers have more choices than ever before.
Brands invest millions publishing their own content to get a tiny sliver of this media consumption. Radio, newspapers, and magazines continue to see their once-significant shares erode. Social media companies have seen their share increase in recent years, especially among millennials who spend 24 percent of their time with media on social networks, according to Nielsen. And don’t forget the entertaining options in mobile, gaming, virtual reality, and even augmented reality that are vying for consumer attention.
In this crowded entertainment market, it’s imperative that media companies differentiate their offerings by enticing viewers with the right content at the right time. One of the most efficient ways to achieve this is through data-driven personalization.

Only 16% of consumers say TV recommendations are consistently very good.
Source: Piksel and Censuswide

Of consumers say finding something good to watch is so important that it influences their choice of service provider.
Source: Piksel and Censuswide

Of what people watch on Netflix is a recommendation.
Source: The Netflix Tech Blog
TV companies that succeed with video personalization do two things very well. First, they identify personalization techniques that drive the desired results, such as increased viewer retention and video views. Second, they put resources into executing and scaling those techniques.
If you’re a TV provider just starting out with personalization, the following techniques should be among the first you try. If you’re already doing some personalization, these techniques will help you identify aspects of personalization that you may have missed.

7 ways to successfully deliver personalized TV.
Personalization helps you keep viewers engaged and loyal to your company at each viewing session. Among the seven ways to personalize TV listed below, some have been tested and proven effective by Adobe engineers, while others have been proven by the marketplace. You’re the best judge of which ones will work for your audience.
1: Personalization for new visitors (a.k.a. “The Cold Start”).
When a new visitor finds content to watch on your service, he or she is more likely to become a loyal viewer. Yet it can be hard to recommend the right content to new visitors because of “the Cold Start” problem, where you don’t yet have historical viewing data to work with. You can solve this problem by using data from existing customers who share similar demographics to the new visitor, or who watch content in a similar context.
Let’s say that you have anonymized data about the age, gender, location, and website visitation history of each new visitor. You can use this data to show millennial women who visited cooking websites one type of TV experience and baby-boomer men who visited sporting websites another type of TV experience. Similarly, you can deliver a custom TV experience to all your most important audience segments.
When a TV service is personalized like this, first-time visitors will be more likely to watch a show in their first session and come back again to watch similar content.
2: Continuous personalization for return viewers.
The task of personalizing TV viewing is never finished because each interaction and piece of data about a user can be used to adjust the experience. Make sure you’re tracking what’s been watched and what hasn’t. This can be used to recommend content related to what’s already been viewed or to promote a whole category of content that may be liked by viewers within a similar audience segment.
3: Personalized browsing experience.
As viewers browse within a personalized TV interface, they should be exposed to optimal content, presented in a way that will compel them to continue watching. This could include personalized navigation, personalized recommendations, and even a personalized look and feel of the overall experience.
Netflix provides a good example of a personalized browsing experience. A presentation on the future of recommender systems by Justin Basilico of Netflix and Xavier Amatriain of Quora shows how it works. For each user, Netflix personalizes the top-ranked recommendation and gives that one recommendation a lot of screen real estate. This top-ranked recommendation includes a predicted rating of the featured item for the user and evidence to support the rating from the user’s viewing history. Netflix also determines the categories of recommendations that a user may like, organizing them by row. And it determines the rankings of recommendations within each category, organizing them from left to right within a categorical row.
4: Personalized video recommendations in search results.
Similar to the browsing experience, when viewers search within a personalized TV interface, the results page needs to bring them deeper into the service. The best way to do this is by personalizing the search results based on the data you have about each user.
Location is one piece of data that every TV provider has about its users, and it can be used to make search results more relevant. For example, Google has been personalizing search results for signed-out users since 2009. And it’s using personalized search on YouTube. This can be illustrated in the search results for “football” on YouTube in the U.S. versus in the UK.
Of course, location is just one dimension that could influence video recommendations in search results. A user’s search results could also be influenced by viewing history, device type, time of day, favorite actors, favorite directors, and more.
5: Personalized recommendations at the end of a show.
The moment a viewer finishes watching a show is a critical moment in their viewing session. They will either stay engaged or end their viewing session. Many TV services, such as HBO Go, keep viewers watching by automatically transitioning to a new show.
Some transitions between one show to the next are easy to predict, while others require better data and technology. For example, it’s easy to predict that viewers will want to move from one episode to the next in a series. However, it’s harder to predict what viewers will want to watch at the end of a series or after watching a movie. Personalization technology can assist in this area and keep viewers watching.
6: The pick-up-where-you-left-off capability.
Another critical feature for return viewers is the ability to continue watching a show they left. This capability is especially helpful if it works across devices so that viewers can jump around from big screen to tablet to desktop to smartphone as needed.
TV streaming service Crackle provides the pick-up-where-you-left-off capability even for viewers who aren’t signed-in.

7: Personalized advertising.
Another big area for personalization is in advertising. You can help advertisers deliver paid messages only to the viewers who are the most likely to respond. This is different from traditional TV advertising transactions, where advertisers buy ads in shows that index well with their target audience. It’s good for the user because the ads are more relevant. It’s good for the advertiser because the influential power of each ad goes up. And it’s good for the you, as a TV provider, because you can generate more ad revenue from each ad slot.
“Growth in Time Spent with Media Is Slowing,” eMarketer, June 6, 2016, https://www.emarketer.com/Article/Growth-Time-Spent-with-Media-Slowing/1014042.
Jon Lafayette, “Nielsen: Time Spent on Social Media Growing,” Broadcasting & Cable, January 17, 2017, http://www.broadcastingcable.com/news/currency/nielsen-time-spent-social-media-growing/162512.
“Personalized Search for everyone,” Google Official Blog, December 4, 2009, https://googleblog.blogspot.com/2009/12/personalized-search-for-everyone.html.
“TV Viewing Habits,” Piksel and Censuswide, December 2016, https://www.slideshare.net/Evolyte/piksel-tv-viewing-habits-report.
Xavier Amatriain and Justin Basilico, “Netflix Recommendations: Beyond the 5 stars (Part 1),” The Netflix Tech Blog, April 6, 2012, https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429.
Xavier Amatriain and Justin Basilico, “Past, Present & Future of Recommender Systems: An Industry Perspective,” September 18, 2017, https://www.slideshare.net/justinbasilico/past-present-future-of-recommender-systems-an-industry-perspective.
YOUR NEXT STEPS